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Adhesive Contact of a Membrane with a Hemispherical
Indenter: Theoretical Analysis and Model Liquid System

Rebecca E. Webber
Wendy Da Wei Cheng
Kenneth R. Shull
Department of Materials Science and Engineering, Northwestern
University, Evanston, Illinois, USA

The axisymmetric Laplace equation is solved numerically to extract contact-angle
data for a flat liquid=vapor interface contacting a submerged hemispherical solid.
The liquid=vapor interface is treated as a membrane, with a membrane tension
equal to the surface energy of the liquid. By measuring the vertical displacement
of the membrane and the projected contact area the membrane makes with the
hemisphere, the contact angle and correspondingly the driving force for motion
of the contact line can be measured. We show that characteristic receding and
advancing contact angles can be obtained by measuring the contact radii formed
upon initial contact between the interface and hemisphere and final contact just
prior to detachment of the interface, respectively. Use of the technique is illustrated
with a model experiment involving the contact of an air=water interface with a
poly(methyl methacrylate) surface.

Keywords: Adhesion; Dynamic contact angles; Laplace equation; Wetting

1. INTRODUCTION

Adhesion of soft materials is often probed by bringing a rigid, hemi-
spherical indenter of radius R into contact with a flat, compliant sur-
face. The variables that are commonly measured are the normal
displacement, d, defined as zero when the apex of the hemisphere is
coincident with the surface of the elastic material; the normal load,
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P; and the contact radius of the circular region of contact between the
two materials, a. For nonadhesive materials, the contact radius
increases smoothly from zero as the compressive displacement
increases. The relationship between a and d in this nonadhesive case
is purely geometrical, and for small values of a=R the following
relationship is obtained [1]:

a ¼ ðdRÞ1=2: ð1Þ

Adhesive interactions cause the contact radius to be larger than the
value predicted by Equation (1), as quantified originally by Johnson,
Kendall, and Roberts (JKR) [2]. The effect can be quantified by the fol-
lowing relationship of the energy release rate, G; the displacement;
and the contact radius:

G ¼ E�ða2=R� dÞ2

2pa
; ð2Þ

with E� ¼ E=(1� n2), where E is Young’s modulus and n is Poisson’s
ratio for the compliant material [3]. The contact radius for d ¼ 0,
which we define as a0b, is given by the following expression:

a0b

R
¼ ½2p�1=3 G

E�R

� �1=3
: ð3Þ

Under equilibrium conditions, G can be viewed as the adhesion energy.
The requirement that a0b=R be small is equivalent to requiring a small
value of G=E�R. In many commonly employed cases, this condition is
quite easily met. For equilibrium contact of small silicone elastomers,
for example, representative values are 0.05 J=m2 for G, 106 Pa for E,
and 10�3 m for R, giving G=ER� 5� 10�5 and a0b=R� 0.06 (with
n ¼ 0.5). The appeal of JKR-type experiments in this regime is that
Equations (2) and (3) remain valid, yet the contact radii are large enough
to be measured easily. The typical JKR geometry is shown in Figure 1a.

A consequence of Equation (2) is that low-modulus materials are
required to measure very low values of the adhesion energy, G. How-
ever, the use of very soft materials poses an additional problem, even
if the ratio G=ER remains small. In these situations, surface deforma-
tions become more important than bulk deformations and can dominate
the behavior. In other words, work done against the interfacial tension,
c, becomes more important than work done against bulk elasticity of the
compliant material. In the liquid limit (E! 0), the contact radius is
determined by a balance of adhesion energy and interfacial tension.
The situation is conceptually identical to the illustration in Figure 1b,
which shows a membrane that has been expanded into contact with a
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surface by the application of a pressure difference, DP. In general, the
tension of this membrane is determined by the elastic deformation of
the membrane and by its surface energy. Because the membrane in
our case is an analog of the free surface of a material, we ignore elastic
effects and assume the membrane tension is equal to c in the rest of our
discussion. Elastic contributions to the membrane have been considered
by Wan and Kogut for this geometry for the case where DP ¼ 0 [4], and
in the recent experiments of Raegen et al. [5]. Similar geometries have
also been suggested by Shanahan, whose early contributions have influ-
enced much of this more recent work [6,7].

In the membrane-contact problem of interest to us (Figure 1b), the
membrane is originally circular with a radius of Rm and is then
pressurized to form a curved surface with radius of curvature R.
The pressure difference required to produce this curvature is 2c=R.

FIGURE 1 Contact of curved materials with a flat surface: (a) compliant
hemisphere (JKR geometry), and (b) membrane geometry formed by applying
pressure to one side of an initially flat membrane.
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Prior to contact, the center of the membrane is displaced from the edge
by a distance equal to R2

m=2R, assuming that displacement is small
compared with Rm. Contact of the membrane with the surface occurs
when this central displacement is equal to dm, the distance between
the supported edge of membrane and contacting surface. Therefore,
the pressure difference required to initiate contact is equal to
4cdm=R

2
m. If DP remains fixed at this value, and there is no adhesion

present to increase the contact area, the membrane=substrate contact
radius will be equal to zero at this point. Adhesive interactions
increase the contact radius, giving a membrane with the shape illu-
strated in Figure 2. As described in the Appendix, the following
expression is obtained for the shape of the membrane, provided that
its slope is small (jdz=drj<<1):

z ¼ dm

R2
m

a2
0s lnðr=a0sÞ

lnðRm=a0sÞ
þ r2 � a2

0s

� �
: ð4Þ

Here a0s is the specific value of the contact radius at the pressure
required for the center of the membrane to make contact with the sur-
face. The subscript s indicates that this is the value for surface defor-
mation, as opposed to the bulk deformation. The contact angle that the
membrane makes with the surface is given by the following
expression:

h � tan h ¼ dz

dr

����
r¼a0s

¼ a0sdm

R2
m

2� 1

lnða0s=RmÞ

� �
: ð5Þ

The contact angle is significant in the context of adhesion, because
it can be directly used to obtain the adhesion energy from the following

FIGURE 2 Detailed schematic illustration of the membrane shape for the
geometry illustrated in Figure 1b.

430 R. E. Webber et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
0
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



general relationship:

G ¼ cð1� cos hÞ � ch2

2
ð6Þ

for which we have invoked the small angle approximation that is con-
sistent with the geometric approximations already made. By combin-
ing Equations (5) and (6), we obtain the following expression for the
energy-release rate for the membrane case:

G ¼ 2c
a2

0sd
2
m

R4
m

1� 1

2 lnða0s=RmÞ

� �2

: ð7Þ

For small values of a0s=Rm, the following expression is obtained from
rearrangement of Equation (7):

a0s

Rm
� 2G

c

� �1=2
� h: ð8Þ

The assumption of the JKR analysis [Equations (2) and (3)] is that
a0s>>a0b, so that the contact radius is not limited by surface deforma-
tions. As the sample size decreases and the surface-to-volume ratio
increases, surface deformations become increasingly important and
eventually dominate the response. We define Rcrit as the critical value
of R below which surface deformations dominate the response. We can
obtain this parameter from Equations (3) and (8) with the condition
that a0s ¼ a0b for R ¼ Rcrit:

Rcrit ¼ p
c

E�
c

2G

� �1=2
¼ p

h
c

E�
: ð9Þ

Some insight into the relevance of Equations (8) and (9) is obtained by
considering the behavior of gels with c� 0.03 J=m2 and E� � 104 Pa. For
these gels, Rcrit exceeds 1 mm for values of G that are less than
1.3� 10�6 J=m2, corresponding to contact angles less than 0.01 rad.
(0.5�). This value for G represents a very small adhesion energy and
enables surface deformations to be ignored in bulk contact mechanics
experiments in most practical situations. However, there are two impor-
tant exceptions. The first of these are experiments with very soft gels, or
with submicron latex particles, where c=E�R is large enough so that
surface deformations need to be taken into account [8,9]. The second
important exception involves experiments that are designed to take
advantage of the membrane geometry itself. A functional membrane
designed to have specific interactions can be prepared, for example,
by spreading appropriately chosen surfactant molecules at an air=water
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water interface. The significance of this analysis is that the contact
angle, and hence the adhesion energy, can be obtained from measure-
ments of the contact radius, provided that dm and Rm are known.

In this article we describe some simple model experiments in which
the contact angle is obtained from a measure of the contact radius. We
make use of the simplest possible model system, where the membrane
is an air=water interface. Also, instead of applying a pressure to gen-
erate a curved interface that interacts with a flat, rigid surface, we
invert the curvature and study the interaction of a curved, rigid hemi-
sphere with an initially flat interface, as illustrated in Figure 3. This
inverted geometry is experimentally easier to implement and has been
used for this reason. Because two conditions required to obtain ana-
lytical solutions are not valid for this problem, a numerical analysis
is applied to obtain an expression for the contact angle. First, the
density difference of the media on either side of the interface is no
longer zero, so that variations in the hydrostatic pressure need to be
taken into account. Second, the slope of the interface is not necessarily
small. For both reasons a full solution of the axisymmetric Laplace
equation for the shape of the interface must be employed. Our method
of solution is formulated here, followed by a description of the appli-
cation of these results to measurements of contact angles.

2. THEORETICAL APPROACH

Our experimental geometry, illustrated schematically in Figure 3,
involves the placement of a glass hemisphere at the bottom of a glass
dish. The dish is subsequently filled with water to cover the hemi-
sphere, and a syringe pump is used to raise and lower the water level.
During the course of an experiment, the measured quantities are
di, the displacement of the water level relative to the apex of the

FIGURE 3 Schematic of the interfacial test geometry and relevant para-
meters for analysis.
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hemisphere, and a, the projected radius of the dry patch at the center
of the hemisphere. A polar coordinate system originates at the apex
of the hemisphere, with r representing the radial distance away from
the axis of symmetry, and z representing the distance along the axis of
symmetry. Because the interface flattens as a result of gravity, /
(defined in Figure 2) approaches 180� for large values of r, where the
displacement of the interface with respect to the apex of the sphere
is equal to di. Other relevant parameters are d0, the z coordinate of
the surface of the hemisphere at r ¼ a, and h, the total vertical dis-
placement of the interface, which are related to one another as follows:

d0 ¼ di � h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � a2
p

� R: ð10Þ

At the three-phase contact line, where the air=water interface meets
the hemisphere, / is equal to /0, which is related to the contact angle
by the following geometric relationship:

/0 ¼ 180� � hþ arc tan
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðR=aÞ2 � 1
q

0
B@

1
CA: ð11Þ

Equation (11) enables the contact angle to be determined from /0,
which is in turn obtained from the solution to the axisymmetric
Laplace equation as described next.

2.1. Axisymmetric Laplace Equation

The boundary conditions for the shape of the interface in this problem
are / ¼ /0 and z ¼ d0 at r ¼ a, and / ¼ 180� and z ¼ di for r!1. Our
solution is an adaptation of the solutions presented by Rooks et al.
[10], and also by Timoshenko and Woinowsky-Krieger [11]. Our start-
ing point is the Laplace equation obtained by equating the hydrostatic
pressure with the pressure associated with the interface curvature:

Dqgðdi � zÞ ¼ c
1

R1ðzÞ
þ 1

R2ðzÞ

� �
; ð12Þ

where Dq is the difference in density between the oil and water phases,
g is the gravitational acceleration, and R1ðZÞ, R2ðZÞ are the principal
radii of curvature of the interface, given by the following expressions:

R1ðzÞ ¼ �
1

sin /
dz

d/
; ð13Þ

R2ðzÞ ¼
r

sin /
: ð14Þ
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The pressure is equal to zero at z ¼ di, where the interface is flat,
and increases to Dqgh at z ¼ d0. Equation (12) can be written in non-
dimensional form by using the capillary length, C, to obtain the two
dimensionless distances X and Y [10]:

C ¼ c
Dqg

� �1=2
; X � r

C
; Y � z

C
: ð15Þ

After some rearrangement, the following form of the Laplace equa-
tion results from the combination of Equations (12)–(15):

dY

d/
¼ X sin /

XY þ sin /� ðXh=CÞ : ð16Þ

A related expression for dX=d/ is obtained from the fact that
dz=dx ¼ �tan /:

dX

d/
¼ �X cos /

XY þ sin /� ðXh=CÞ : ð17Þ

Equations (16) and (17) describe the evolution of r and z with /. The
balance of the Laplace pressure and gravitational forces determines
the shape of the interface, as / asymptotically approaches 180�

because of gravitational flattening. To solve these equations, we
employ a shooting method where /0 is adjusted iteratively until the
value obtained for h agrees with the desired (or experimental) value.

2.2. Numerical Solutions

The qualitative behavior of the system is determined by the relative
values of the two characteristic lengths in the problem, the radius of
curvature of the hemisphere, R, and the capillary length, C. Char-
acteristic behavior for different values of C=R is illustrated in
Figure 4, where we show calculated interface profiles for C=R ¼ 104

(part a), C=R ¼ 0.9 (part b), and C=R ¼ 0.1 (part c). For each of these
calculated profiles, a=R ¼ 0.3, h ¼ 70�, and, from Equation (11),
/0 ¼ 132.5�. The capillary length for pure water (q ¼ 1 g=cm3 and
c ¼ 72 erg=cm2) is 2.7 mm, making the data for C=R correspond to
our experimental system, in which we use a glass hemisphere with
R ¼ 3 mm. The capillary length is the characteristic distance over
which gravitational flattening affects the shape of the interface. For
very large values of C=R, as in Figure 4a, the shape of the interface
in the vicinity of the hemisphere is not perturbed by gravity. If the
interface slope is small (/0 close to 180�), the shape of the interface
is given by the following adaptation of Equation (4):
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FIGURE 4 Example interfacial profiles for a=R ¼ 0.3 and h ¼ 70�. The differ-
ent plots correspond to different values of the normalized capillary length,
C=R, using the values indicated on each plot. The dotted line in each case is
the outline of the hemisphere, and the solid line is the solution to the full
Laplace equation obtained as outlined in Section 2. The symbols in the top
figure represent Equation (18), with a ¼ 0.3R and Rm ¼ 1.5a.
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z ¼ d0 þ
a2h0

R2
m

lnðr=aÞ
lnðRm=aÞ

þ r2 � a2

� �
: ð18Þ

Here h0 is the vertical distance between the interface position at
r ¼ Rm and r ¼ a. The circles plotted along the interface in Figure
4a represent the fit to Equation (18), where we have taken Rm ¼ 1.5a.

Equation (18) is valid for small interface slopes and for values of r
that are much less than the capillary length. In this regime no single,
well-defined value for h0 exists, because it depends on the value that is
chosen for Rm. Experimentally, this regime is not as useful as the
regime for large values of r, where gravitational flattening gives an
asymptotic value for h0 (which we refer to simply as h) and a well-
defined value for the closely related interface displacement, di. The
calculated interface profiles shown in Figures 4b and 4c show the
existence of a well-defined, asymptotic interface height. Because
Equation (18) is no longer valid for these large values of Rm, the full
numerical solutions need to be employed to determine contact angles
from the measured values of a and di.

The control variable in an experimental determination of the con-
tact angle is the interface displacement, di, which is adjusted by add-
ing or removing liquid from the system. The contact radius in this case
is actually the projected radius of the dry patch at the top of the hemi-
sphere, but we continue to use the contact terminology to make the
connection to membrane-contact experiments. In Figure 4b, a contact
radius of 0.3R corresponds to a contact angle of 70�. This combination
of a and h is just one combination of these parameters that satisfies the
Laplace equation for C=R ¼ 0.9 and d=R ¼ 0.193. The other solutions
for these values of C=R and d=R can be illustrated by plotting h as a
function of the corresponding contact radius. In Figure 5, we show a
series of these types of curves, for each of the three values of C=R used
to generate the data in Figure 4. Each of the three plots includes a
series of curves for the same value of C=R but with different values
of di=R.

Use of the curves shown in Figure 5 can be illustrated by consider-
ing the case for C=R ¼ 0.9, which corresponds to our experimental
situation of an air=water interface in contact with a hemisphere with
R¼3 mm. An experiment is generally conducted by completely
immersing the hemisphere in water and then carefully withdrawing
water until di ¼ 0, where the air=water interface hits the apex of the
hemisphere. At this point, the contact area grows rapidly, and the con-
tact angle evolves along the dashed line in Figure 5b. The contact
angles along this di ¼ 0 line, corresponding to the original contact of
the interface, are referred to as h0. Note that h0 is a receding contact
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FIGURE 5 Calculated contact curves as a function of a=R, for different com-
binations of di=R and C=R. Each of the three plots has a series of curves for a
fixed value of C=R (104 for (a), 0.9 for (b), and 0.1 for (c)). The numbers by each
curve represent the value of di=R corresponding to that curve. The labeled
symbols in (b) are explained in the text.
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angle because the contact line is moving toward the liquid phase as a
increases during this portion of the experiment. If di remains fixed at
zero, the contact radius will stop growing at the point where h0 is equal
to the static receding contact angle. Point A in Figure 5b corresponds
to the situation where this contact angle is 70�. The rapid growth of the
contact radius when the interface makes contact with the hemisphere
gives a clear signature of the point where di ¼ 0.

Once the interface makes initial contact with the hemisphere,
additional liquid can be added or withdrawn, resulting in further
changes in di. Changes in the interface displacement shift the curves
relating the contact angle and the contact radius, with positive
changes in the displacement moving the curves to higher contact
angles and lower contact radii. If the contact angle remains fixed,
increasing the interface displacement will lead to a decrease in the
contact radius. For example, for a contact angle of 70�, the contact
radius shifts from 0.59R to 0.3R as di is increased from 0 to
0.193R. This transition corresponds to motion from point A to point
B in Figure 5b.

The power of this technique for measuring contact angles is that h
can be measured as a function of the velocity of the contact line, for both
advancing and receding contact. The assumptions of this approach are
that the Laplace pressure throughout the liquid is equilibrated and
that axial symmetry is maintained. The method requires that the -
interface displacement be measured accurately. Although this can be
accomplished by a variety of methods, including accurate measure-
ment of the volume of liquid added to the system, it is useful to develop
methods that can be used to obtain the estimates for the static advanc-
ing and receding contact angles without requiring an independent
measure of the interface displacement. The receding contact
angle can be measured from h0 as described previously because the
jump into contact provides a discernable signature of the point where
the interface displacement is equal to zero. Advancing contact angles
can likewise be determined by measuring the detachment radius, ad.

The concept of the detachment radius originates from the fact that
plots of h vs. a (Figure 5) have a minimum for positive values of the
interface displacement. This minimum occurs at h ¼ hd and a ¼ ad,
where hd is the detachment contact angle and ad is the detachment
contact radius. Plots of hd as a function of ad can be determined from
a series of numerical calculations, each using a different value for the
interface displacement. Results for C=R ¼ 0.1, 0.9, and 104 are shown
in Figure 6. The significance of hd and ad can be understood by con-
sidering the behavior of an idealized system characterized by advanc-
ing and receding angles that are not dependent on the velocity of the
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contact line. The specific case for a receding contact angle of 70� and an
advancing contact angle of 105� is illustrated in Figure 5b. The contact
radius established during initial contact is given by point A, where the
horizontal line representing h ¼ 70� intersects the contact curve for
di ¼ 0. When the interface displacement is increased, the contact
radius remains fixed until the contact angle reaches the advancing
value of 105� (point C on Figure 5b). Point C lies on the contact curve
for di ¼ 0.193R, so this is the interface displacement that must be
applied for the contact radius to begin to shrink. Further increases
in the interface displacement give decreasing values of the contact
radius. If the contact angle remains fixed at 105�, the contact radius
eventually shrinks to the value corresponding to point D on Figure
5b, which is the minimum of a contact curve with di ¼ 0.325R. For lar-
ger values of di, the contact angle exceeds 105� for all values of the con-
tact radius. Because the contact angle exceeds 105� for the remainder
of the experiment (assuming that di is continuing to increase) the
contact radius rapidly reduces to zero; i.e., the interface detaches from
the hemisphere. As a result, the detachment angle, and hence the

FIGURE 6 Relationship between the detachment contact angle and normal-
ized detachment contact radius, obtained from minima of the curves plotted in
Figure 5.
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advancing contact angle, can be determined by measuring the contact
radius where membrane detachment occurs, using the data shown in
Figure 6 to convert ad to hd.

The detachment process is analogous to adhesive pulloff, which is
observed in elastic systems when the energy-release rate exceeds a
critical value. Using the language of fracture mechanics, the contact
radius will shrink whenever the energy-release rate, G, given here
by c(1� cos h), exceeds a critical value. In our case, the applied
energy-release rate driving detachment of the interface is controlled
by controlling di, which in turn determines h and hence G.

3. MODEL EXPERIMENT

A simple set of experiments was performed to illustrate the use of the
interfacial contact concepts outlined in Section 2. In these experi-
ments, a glass hemisphere with a radius of 3 mm was used, onto which
a hydrophobic surface coating was placed by spin coating a solution of
poly(methyl methacrylate) in toluene. This coated hemisphere was
placed in a cylindrical dish with a radius of 5 cm and was completely
covered with water. A New Era Pump Systems (Farmingdale, NY,
USA) syringe pump was used to add and withdraw water from the
dish, with a typical pumping rate of 0.833 mL=min. This volume rate
corresponds to an interfacial displacement rate of 0.42 mm=min.
Images of the contact between the hemisphere and the interface were
captured by a video camera attached to a Zeiss Axiovert inverted
microscope with 1.25� objective lens (Ziess, Oberkochan, Germany).
The projected contact radii between the interface and hemisphere
were measured from digitally collected images.

Figure 7 displays a typical initial contact picture accompanied by
the interfacial profile at that point for an air=water interface contact-
ing a glass hemisphere coated with a thin layer of poly(methyl
methacrylate) (PMMA). The contact area is readily discernable, and
the value of h0 obtained from the measured contact radius is 70� (point
A on Figure 5b). The advancing contact angle was obtained by increas-
ing the interface displacement and measuring the critical contact
radius just prior to the point where water completely floods the surface
of the glass hemisphere. Images were taken once every second, and
measured contact radii for the last 5 s of several different experiments
are plotted in Figure 8. The contact line in these experiments is mov-
ing with velocities as large as 100 mm=s. As a result, the limited time
resolution imposed by the video capture rates we have used gives con-
siderable uncertainty in the actual value of ad. This uncertainty
explains a large fraction of the spread in advancing contact angles
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determined from the relationship between ad and hd that is reproduced
in Figure 9. In this figure, we take the last measured value of a for
each of the curves in Figure 8 (plotted as solid vertical lines in

FIGURE 7 Typical contact image and interfacial profile for initial contact of
an air=water interface on a PMMA-coated hemisphere (top) and the corre-
sponding calculated interfacial profile (bottom). In this example, R ¼ 3 mm,
C ¼ 2.7 mm, ac ¼ 1.8 mm, and h0 ¼ 70�.
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Figure 9) and convert these to contact angles using the relationship
between ad and hd that is valid for R ¼ 3 mm and C ¼ 2.7 mm. Values
of hd corresponding to these contact radii vary from 77� to 98�. This
analysis assumes that the system evolves such that adhesive detach-
ment of the interface occurs at the point of the instability, but the
actual behavior involves a more complicated interplay of the relation-
ship between the dynamic contact angle and velocity at which the con-
tact radius is decreasing [12]. A more complete approach involves the
accurate determination of the interface displacement, so that the con-
tact angle can be determined directly from the values of di and a.

4. SUMMARY AND CONCLUSIONS

In this article we have described a membrane-contact geometry that
can be used to measure adhesive interactions. Analytic expressions
are available for small deformations in situations where the pressure
difference across the membrane can be ignored. The simple model sys-
tem to which we have applied this analysis is an air=water interface.

FIGURE 8 Measured contact radii from the final five images from advancing
contact measurements for a PMMA-coated hemisphere with R ¼ 3 mm.
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In this case the analytic solutions cannot be applied, and the contact
angle is obtained from measured values of the displacement and con-
tact radius using the numerical solution to the axisymmetric Laplace
equation. Two contact angle values can be measured without the need
to directly measure the displacement of the interface relative to the
glass surface used in these experiments. The first of these is the reced-
ing contact angle made when the interface first comes into contact
with surface. The second of these is the advancing angle, correspond-
ing to the detachment instability that occurs when the dry patch at the
surface suddenly vanishes as the interface displacement is increased.

As applied to the experiments performed with the PMMA-coated
glass hemispheres, the contact angles that we determine with this
method are in agreement with those we obtain from the same systems
from more conventional methods, which involve direct visualization of
advancing and receding droplets. However, the advantage of the mem-
brane geometry proposed here is that the flat air=water interface
can be easily modified in a variety of ways. For example, functional

FIGURE 9 Calculated values of h0 and hd for C ¼ 2.7 mm and R ¼ 3.0 mm.
The vertical lines correspond to the final contact radii from the curves shown
in Figure 8 and are used to obtain measured values of hd.
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Langmuir monolayers can be spread at the air=water interface [13],
and the interactions of these monolayers with various submerged
surfaces can be studied. The technique is very well suited for exploring
biological interactions across aqueous media, and these are the types
of problem to which the method is currently being applied.
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APPENDIX: MECHANICS OF MEMBRANE CONTACT FOR
SMALL DEFORMATIONS

For the special case of a zero density difference across the interface,
Equations (12)–(14) reduce to the following:

c �sin /
d/
dz
þ sin /

r

� �
¼ DP; ð19Þ

with tan / ¼ �dz=dr. If the magnitude of dz=dr is small (/ close to 0 or
180�) this equation simplifies further:

d2z

dr2
þ 1

r

dz

dr
¼ DP

c
: ð20Þ

From the boundary conditions illustrated in Figure 2 (z ¼ 0 at r ¼ a
and z ¼ dm at r ¼ Rm), we obtain the following solution for the shape
of the membrane:

z ¼ lnðr=aÞ
lnðRm=aÞ

dm �
DPðR2

m � a2Þ
4c

� �
þ DPðr2 � a2Þ

4c
: ð21Þ

It is useful here to introduce the inflation pressure, P0, which is
required to produce the displacement of dm and bring the initially flat
membrane into contact with the surface:

DP0 ¼
4cdm

R2
m

: ð22Þ

Equation 4 is obtained by taking DP ¼ DP0 ¼ 4cdm=R
2
m. An expression

for general values of the applied pressure is obtained by writing
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DP ¼ DP0þPxs. Equation (21) can then be written in the following
form:

z

dm
¼ � lnðr=aÞ

ln f
f2 þ Pxs

DP0
ðf2 � 1Þ

� �
þ 1þ Pxs

P0

� �
r

Rm

� �2
�f2

( )
ð23Þ

with f � a=Rm. The contact angle against a flat surface is given by the
following expression:

h ¼ dz

dr

����
r¼a

¼ � dm

Rmf ln f
f2 þ Pxs

DP0
ðf2 � 1Þ

� �
þ 2fdm

Rm
1þ Pxs

DP0

� �
: ð24Þ

The expression for the contact angle is simplified considerably for
two special cases. The first of these corresponds to the case where
the pressure is fixed at the inflation pressure, i.e., Pxs ¼ 0, in which
case the following expression is obtained for the contact angle:

h ¼ fdm

Rm
1� 1

2 ln f

� �
: ð25Þ

If the pressure difference is relaxed to zero after the contact is made
(Pxs ¼�DP0), we obtain.

h ¼ �dm

Rmf ln f
: ð26Þ

In each case, expressions for the energy release rate are obtained from
the small angle approximation of Equation (6), i.e., G ¼ h2=2. The
G expression for DP ¼ 0 is equivalent to the expression that has been
given previously by Wan and Kogut, who also provide a generalized
version that accounts for elastic contributions to the membrane
tension [4].
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